Муниципальное бюджетное образовательное учреждение Игринская средняя общеобразовательная школа №4 (МБОУ Игринская СОШ №4)

СОГЛАСОВАНО

Заместитель

директора по УВР

1/Семенова О.Н

ОТЯНИЧП

На заседании

педагогического совета

Протокол № 1

От «30» августа 2023 г.

УТВЕРЖДЕНО

Приказом директора

МБОУ Игринская СОШ

№4

Приказ № 264

от «30» августа 2023г.

Дополнительная общеобразовательная общеразвивающая программа «Олимпиадная математика»

естественнонаучной направленности возраст 15 - 17 лет срок реализации: 1 года

Составитель:

Шкляева Нина Филаретовна, педагог дополнительного образования центра цифрового и гуманитарного профилей «Точка роста» МБОУ Игринская СОШ № 4

Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Олимпиадная математика» разработана в соответствии с Федеральным законом от29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»; Приказа Министерства просвещения РФ № 629 от 27 июля 2022 года «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»; Постановления Главного санитарного врача 28.09.2020 г №28 «Об утверждении СанПин 2.4.3648-20 «Санитарно-эпидемиологические требования к организации воспитания и обучения, отдыха и оздоровления детей и молодежи»; Письма от 18 ноября 2015 г № 09-3242 «Методические рекомендации ПО проектированию дополнительных общеразвивающих программ»; Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ от 23.08.2017 г №816; Устава МБОУ Игринская СОШ №4, Положения о рабочей программе, реализующей ФГОС, утвержденного приказом МБОУИгринская СОШ №4 № от 04.05.2023 № 181.

Направленность программы: естественнонаучная.

Актуальность программы. Математика, давно став языком науки и техники, в настоящее время все шире проникает в повседневную жизнь. Компьютеризация общества, внедрение современных информационных технологий требует математической грамотности. Это предполагает и конкретные математические знания, и определенный стиль мышления, вырабатываемый математикой. Решение олимпиадных задач занимает в обще- интеллектуальном развитии учащихся и в их математическом образовании особое место. Умение решать олимпиадные задачи — это один из основных показателей уровня математического развития, глубины освоения учебного материала, способность неординарно мыслить. Программа реализуется в соответствии с социальным заказом и запросами учащихся и их родителей, выявленными на основе результатов анкетирования. В целях обеспечения развития и формирования личности ребенка многие родители хотят направить своих детей на занятия в творческие объединения.

Родители отметили важность приобщения к углубленному изучению математики, к профессиональной ориентации, что учитывается в дополнительной общеобразовательной общеразвивающей программе «Олимпиадная математика».

Цель: Создание условий для успешного развития школьников, формирование информационных и коммуникационных компетенций в области математики путем участия обучающихся в мероприятиях олимпиадного движения; развитие логического и практического мышления, алгоритмической культуры, овладение математическими знаниями и умениями, необходимыми для продолжения образования в областях, связанных с математикой.

Задачи:

- 1. обучить учащихся методам и приемам решения нестандартных задач;
- 2. сформировать умения и навыки решения нестандартных математических задач высокого уровня сложности;
 - 3. развить владение рациональными приёмами работы и навыками

самоконтроля.

Отличительные особенности программы: позволяют обучающимся ознакомиться с разнообразием математических задач, предлагаемых на соревнованиях и конкурсах, укрепить свои школьные знания по математике. Рассмотрение более широкого (по сравнению со школьной программой) круга математических вопросов позволит ученикам определить свои интересы и склонности к той или иной области, чтобы определиться в дальнейшей профессиональной специализации, и подготовиться к последующему изучению математических предметов, участвовать в математических соревнованиях, олимпиадах, турнирах. Особенностью программы является также ее практическая направленность, которая служит успешному усвоению курса математики, он направлен на развитие познавательного и интереса, расширение знаний по математике, полученных на уроках, на развитие креативных способностей учащихся и более качественной отработке математических умений и навыков при решении олимпиадных задач по математике. Учитывая особенности математики как естественной науки, можно выделить три составляющих необходимых для успешного участия в интеллектуальном состязании:

- 1. развитый математический кругозор;
- 2. умение решать нестандартные задачи, владение необходимым для этого математическим аппаратом;
- 3. практические умения и навыки, знание основных приемов, способов решения математических задач.

Эти ключевые моменты определяют основные направления подготовки школьника, и являются главными при составлении программы данного кружка.

Программа дополняет школьные учебные предметы по математике. Программа предусматривает изучение отдельных вопросов, непосредственно примыкающих к основному курсу, а так же углубляющих и расширяющих его через включение более сложных задач, исторических сведений, материала, способствующего полному и углубленному изучению математики.

Приобщение к планомерному развитию их интереса к предмету и выбору профессии.

Адресат программы: Программа рассчитана для учащихся 10-11 классов. Состав группы 8 - 12 человек.

Уровень программы: базовый.

№	Уровень	Год обучения	Уровень освоения
1	Базовый	1 год	Углубленное изучение приемов обучения в соответствии с современными требованиями.

Сроки реализации: Дополнительная общеобразовательная общеразвивающая программа « Олимпиадная математика » рассчитана на 1 годобучения - 72 часа.

Формы организации образовательного процесса: групповая, фронтальная (работа по подгруппам) и индивидуальная. Возможные формы проведения занятий: семинар, круглый стол, беседа, тестирование, участие во всероссийской олимпиаде

школьников по математике, международной игре «Кенгуру», знакомство с научнопопулярной литературой, связанной сматематикой;

Условия, формы и технологии реализации программы «Олимпиадная математика» учитывает возрастные и индивидуальные особенности учащихся. Программа базируется на основных принципах дополнительного образования:

- выбор различных видов деятельности, в которых происходитличностное и профессиональное самоопределение учащихся;
- вариативность содержания и форм организации образовательного процесса;
 - адаптивность к возникающим изменениям.

Педагогический процесс основывается на принципе индивидуального подхода к каждому ребенку. Задача индивидуального подхода — наиболее полное выявление персональных способов развития возможностей учащегося, формирование его личности и возраст учащихся. Индивидуальный подход помогает отстающему учащемуся наиболее успешно усвоить материал и стимулирует его творческие способности, а для учащихся, чей уровень подготовки превышает средний показатель по группе, позволяет построить индивидуальный образовательный маршрут.

В ходе реализации программы образовательный процесс организуется в очнозаочной форме. Возможно обучение и с использованием дистанционных образовательных технологий и (или) электронное обучение. Программа подготовки предполагает очные дистанционные занятия на интернет платформе «Я класс», в видеочатах и веб-чатах в социальной сети «ВКонтакте».

Сроки реализации. Программа рассчитана на 1 год обучения.

Режим занятий: 1 год обучения - 1 раз в неделю по 2 часа (72 часа в год).

Формы контроля: мониторинг, беседы, тесты, самостоятельные и практические работы, творческие работы.

Ожидаемые образовательные результаты:

Личностные результаты:

- формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- формирование качеств мышления, необходимых дли адаптации в современном информационном обществе;

Метапредметные результаты:

- развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
- овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы, давать определения понятиям, классифицировать, наблюдать, проводить эксперименты, делать выводы и заключения, структурировать материал, объяснять, доказывать, защищать свои идеи, умение оценивать достоверность полученной информации.

Предметные результаты:

- выражать свои мысли с применением математическойтерминологии;
- владение базовым понятийным аппаратом по основным разделам содержания;
- практически значимые математические умения и навыки, ихприменение к решению математических задач.

Обучающиеся по программе должны иметь следующие знания, умения инавыки:

- проведение доказательных рассуждений, логического обоснование выводов, использование языков математики для иллюстраций, интерпретаций, аргументаций и доказательства;
- решение широкого класса задач из разделов курса; поисковой и творческой деятельности при решении задач повышенной сложности;
- планирование и осуществление алгоритмической деятельности: выполнение и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использование и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; построение и исследование математических моделей для описания решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы с личным жизненным опытом;
- самостоятельная работа с источниками информации, анализы, обобщения и систематизация полученной информации, интегрирование ее в личный опыт.

Условия реализации программы предполагают единство целей, содержания, форм и методов, обеспечивающих успешность процесса социальной адаптации учащихся к современному социуму.

Материально-техническое обеспечение:

- Компьютер, проектор, экран. Информационно-методическое обеспечение:
- Видеоматериалы, презентации, специализированная литература, иллюстрации, таблицы;

Кадровое обеспечение: педагог дополнительного образования, образование высшее, квалификационная категория — высшая.

Учебный план 1 года обучения

Mo	Tarra parrame	Ко	эличество ча	псов	Форма
No	Тема занятий	всего	теория	практика	контроля/форма аттестации
1	Введение в программу. Инструктажи.	2	1	1	Беседа, мониторинг
2	Алгоритмы и конструкции	27	8	19	Беседа, Самостоятельная работа
3	Графы	12	4	8	Беседа, тесты, Самостоятельная работа
4	Логика	10	4	6	Беседа, Самостоятельная работа, тесты
5	Параметр	21	8	13	Беседа, Самостоятельная работа
	Всего	72	25	47	

Содержание программы первого года обучения

Введение в программу. Инструктажи.

Теория: Специфика олимпиадной задачи. Проведение инструктажей. Практика: приемы решения олимпиадных задач.

Форма контроля: мониторинг.

Алгоритмы и конструкции

Теория: Алгоритмы. Инварианты. Подбор инварианта в решении задач. Метод математической индукции. Методом полного перебора. Моделирование и формализация. Математическая модель (движение). Математическая модель (движение по окружности). Математическая модель (смеси, сплавы). Модуль. Уравнения. Конструкции в геометрии. Теоремы Фалеса (прямая и обратная).

Теоремы Чевы и Менелая (прямая и обратная). Линейные элементы треугольника и соотношения с ними (медианы, биссектрисы, высоты). Конструкции. Вписанный и описанный треугольник.

Практика: Составление математических моделей. Метод математической индукции в решении задач. Метод математической индукции в доказательствах. Решение задач методом полного перебора. Исследование построенной модели в геометрии. Конструкции (в геометрии). Построение чертежей. Построение геометрических примеров.

Форма контроля: Беседа, самостоятельная работа, тесты.

Графы.

Теория: Определения. Ориентированные и неориентированные графы. Подсчет числа ребер. Теоремы. Эйлеровы графы. Связность графов. Цикл в графе.

Деревья. Путь в графе. Теоремы. Плоские графы. Теорема Эйлера. Задачи о знакомствах. Теорема Рамсея.

Практика: Построение моделей для решения задач на основе изученных теорем. Смешанные задачи логического характера, решаемые с помощью графов.

Форма контроля: Беседа, самостоятельная работа

Логика

Теория: Высказывания и их отрицания. Высказывания с союзами «и», «или». Истинные и ложные высказывания. Логические высказывания и теоремы (обратные, противоположные, закон контрапозиции) в геометрии.

Практика: Исследование и решение задач на цепочки логических выводов. Математическая игра.

Форма контроля: Беседа, самостоятельная работа, тесты.

Параметр

Теория: Алгоритм решения уравнения с двумя переменными. Алгоритм решения неравенства с двумя переменными. Параметр. Алгоритм решения линейных уравнений и уравнений, приводимых к линейным. Алгоритм решения линейных и дробно-линейных неравенств. Алгоритм решения системы уравнений и неравенств. Алгоритм решения квадратных уравнений с параметром. Теорема Виета. Квадратные уравнения с

параметром. Расположение корней уравнения на числовой оси. Уравнения с параметром, приводимые к квадратным.

Практика: Исследование и решение задач по теме параметр. Форма контроля: Беседа, самостоятельная работа, тесты.

Методическое обеспечение 1 года обучения

№	Раздел, тема	Форма занятий	Приемы, методы	Дидактическийматериал	Техническое оснащение	Форма контроля
1	Введение в программу. Инструктажи.	Групповые,лекции	Объяснительно - иллюстративные, проблемная лекция	Презентация	Учебная аудитория	Беседа, мониторинг
2	Алгоритмы и конструкции	Групповые, индивидуальные, лекции, практические занятия	ивидуальные, иллюстративные, задачами, пре практические, проблемная		Учебная аудитория	Беседа, самостоятельная работа
3	Графы	Групповые, индивидуальные, практические занятия	Объяснительно - иллюстративные, Практические	Презентация	Учебная аудитория	Беседа, самостоятельная работа, тесты
4	Логика	Групповые, индивидуальные, лекции, практически е занятия	Объяснительно - иллюстративные, практические, проблемная лекция	Карточки с текстовыми задачами, презентации, тесты	Учебная аудитория	Беседа, самостоятельная работа, тесты
5	Параметр	Групповые, индивидуальные, лекции, практические занятия	Объяснительно - иллюстративные, Практические, проблемная лекция,	Карточки с текстовыми задачами, презентации, тесты	Учебная аудитория	Беседа, самостоятельная работа

Календарный график на 72 часов

Сентябрь				Октя	Октябрь Ноябрь			Декабрь								
Недели \ даты				Недели \ даты			Недели \ даты			Недели ∖ даты						
1	2	3	4	1	2	3	3 4 1 2 3 4			1	2	3	4	5		
4-10	11-17	18-24	25- 01	2-8	9-15	16-22	23-29	30-5	6-12	13-19	20-26	27-3	4-10	11-17	18- 24	25-31
2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	1
	8				1	6				23				32		

Январь Февраль				Март			Апрель			Май										
	Недел	и \ даты			Недел	іи∖даты		Недели \ даты			Недели \ даты				Недели ∖ даты					
1	2	3	4	1	2	3	4	1	2	3	4	5	1	2	3	4	1	2	3	4
1-7	8-14	15-21	22- 28	29-4	5-11	12-18	19-25	26-3	4-10	11-17	18- 24	25- 31	1-7	8- 14	15-21	22-28	29-5	6-12	13-19	20-31
2	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	2	2	2	2
40 48			48				57					65			,	72				

ПА – промежуточная аттестация

ИА - итоговая аттестация

Воспитательный компонент программы

Воспитательный компонент программы разработан в соответствии с Федеральным законом от 31.07.2020 № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации» по вопросам воспитания учащихся.

Воспитательная работа осуществляется в рамках реализации дополнительной общеобразовательной общеразвивающей программы «Олимпиадная математика» и имеет 2 важные составляющие — индивидуальную работу с каждым учащимся и формирование детского коллектива.

Цель: Создание условий для формирования социально-активной, творческой, нравственно и физически здоровой личности учащегося, способной на сознательный выбор жизненной позиции, а также к духовному и физическому самосовершенствованию, саморазвитию в социуме.

Задачи:

- 1. Способствовать развитию личности, способной формировать собственное мировоззрение и систему базовых ценностей.
- 2. Сформировать умение самостоятельно оценивать происходящее и использовать накапливаемый опыт в целях самосовершенствования и самореализации в процессе жизнедеятельности учащихся.
- 3. Развивать систему отношений в коллективе через разнообразные формы активной социальной деятельности.

Результат воспитания — это достигнутая цель, те изменения в личностном развитии учащихся, которые они приобрели в процессе воспитания.

Планируемые результаты:

- Проявление творческой активности учащихся в различных сферах социально значимой деятельности;
 - Развитие мотивации личности к познанию и творчеству;
- Формирование позитивной самооценки, умение противостоять действиям и влияниям, представляющим угрозу для жизни, физического и нравственного здоровья, духовной безопасности личности.

Формы работы направлены на работу с коллективом учащихся и родительской общественностью.

Работа с коллективом учащихся:

- развитие творческого, культурного, коммуникативного потенциала учащихся в процессе участия в совместной общественно полезной деятельности;
- формирование навыков по этике и психологии общения, технологии социального и творческого проектирования;

- обучение практическим умениям и навыкам организаторской деятельности, самоорганизации, формированию ответственности за себя и других;
 - содействие формированию активной гражданской позиции;
 - воспитание сознательного отношения к труду, к природе, к своему городу.
 Работа с родителями:
- организация системы индивидуальной и коллективной работы с родителями (тематические беседы, собрания, индивидуальные консультации), втом числе в формате онлайн;
- содействие сплочению родительского коллектива и вовлечение в жизнедеятельность творческого объединения (организация и проведение открытых занятий для родителей, тематических и концертных мероприятий, походов в течение года);
- публикация информационных (просветительских) статей дляродителей по вопросам воспитания детей в группе творческого объединения в социальной сети «ВКонтакте».

Направления воспитательной работы:

- 1. Духовно-нравственное воспитание (фотовыставки, знакомство с наследием, участие в конкурсах духовно-нравственной направленности, тематические праздники, встречи с интересными людьми).
- 2. Гражданско-патриотическое воспитание (экскурсии, в том числе в онлайн формате, музейные экскурсии, беседы, дискуссии, викторины,, занятия- игры, тематические праздники).
 - 3. Интеллектуальное развитие.

Календарный план воспитательной работы

№	Мероприятия	Цели, задачи	Сроки проведения	Примечание
1	Участие в проведении Дня открытых дверей	•		
2	Игра-знакомство «Давай дружить»	Знакомство и сплочение детей в коллективе, формирование коммуникативной культуры	сентябрь	
3	Участие в различных этапах олимпиад	Развитие интеллектуальных способностей, реализация умственного потенциала.	Сентябрь - Февраль	С участием родителей
4.	Экскурсия (по запросу)	познакомить учащихся с экспозициями Игринского районного музея воспитывать патриотизм, любовь и уважение к району содействие развитию коммуникативных компетенций	Январь	С участием родителей
4	Мероприятия, посвященные празднованию 9 мая	Парад	Май	С участием родителей

Список литературы и источников

Литература для учащихся:

- 1. Балаян Э. Н. 1001 олимпиадная и занимательные задачи по математике. 3-е изд. –Ростов н/Д: Феникс, 2008.
- 2. Балаян Э. Н. Готовимся к олимпиадам по математике. 5-11 классы. Ростов H/Д:Феникс, 2009.
- 3. Акулич И.Ф. Учимся решать сложные олимпиадные задачи.- М.:ИЛЕКСА, 2012, 152 с.
- 4. Перельман Я.И. Занимательная алгебра. Занимательная геометрия. Москва 1949
- 5. Математика. 5-9 классы. Развитие математического мышления: олимпиады, конкусы

/авт.-сост. И.В. Фотина – Волгоград: Учитель, 2011. – 202с.

- 6. Нагибин Ф. Ф., Канин Е. С. Математическая шкатулка: Пособие для учащихся. 4-еизд. перераб. и доп. М.: Просвещение, 1984.
 - 7. Пичурин Л. Ф. За страницами учебника алгебры. М.: Просвещение, 1990.
- 8. Олимпиадные задания по математике. 5-11 классы/авт.-сост. О.Л. Безрукова. –Волгоград: Учитель, 2012.-143с.
 - 9. Тригг У. Задачи с изюминкой. М.: Мир, 1975.
- 10. Фарков А. В. Математические олимпиады в школе. 5-11 классы. -8-е изд., испр. идоп. М.: Айрис-пресс, 2009.

Литература для учителя:

- 1. Логические задачи (3-е, исправленное) Раскина И. В., Шноль Д. Э. М:МЦНМО, 2016 120 с.
- 2. Как построить пример? (2-е, стереотипное) Шаповалов А.В. М:МЦНМО, 2014 80 с.
- 3. Нестандартные задачи по математике. Задачи логического характера. Галкин Е. В. М:Просвещение, 1996. 160 с.
- 4. Ленинградские математические кружки: пособие для внеклассной работы. Генкин С.А., Итенберг И.В., Фомин Д.В. Изд-во: Киров: ACA, 1994 272 с.
- 5. Баженов И.И. Задачи для школьных математических кружков: учебное пособие. Баженов И.И., Порошин А.Г., Тимофеев А.Ю., Яковлев В.Д. Сыктывкар: Сыктывкарский ун-т, 2006-224 с.
- 6. Математика. Районные олимпиады. 6-11 классы. Агаханов Н.Х., Подлипский О.К. М:Просвещение, 2010- 192 с.
 - 7. Сборник олимпиадных задач по математике (3-е изд., стереотип.) Горбачев

Н.В. М:МЦНМО,

Интернет – источники

- 1. Математик. Задания интернет-олимпиады «Сократ» Режим доступа: http://www.zaba.ru/ http://www.developkinder.com/client/forumsuhoi/za dachi-all-10.html
- 2. Математика. Как готовиться к олимпиадам. Нестандартные математические задачи на логику и смекалку. Режим доступа: http://www.mathonline.com/olympiadaedu/zadachi-olympiadamath.
- 3. Математика. Коллекция ссылок на сайты с олимпиадными задачами. Режим доступа: http://www.internat18.ru/exams/ olimpiad.html .
- 4. Математика. Олимпиадные задачи по всем разделам математики. Режим доступа: http://schoolcollection.edu.ru/catalog/rubr/1 040fa23-ac04-b94b-4a41- bd93fbf0d55a/
- 5. Математика. Все задачи Всесоюзных олимпиад. Режим доступа: http://www.allmath.ru/olimpsch ool1.htm
- 6. **http://www. mat.1september. ru -** Газета «Математика» Издательского дома «Первоесентября»
- 7. http://www. mathematics. ru Математика в Открытом колледже http://www. math. ru Math.ru: Математика и образование
- 8. http://www. mccme. ru Московский центр непрерывного математического образования(МЦНМО)
 - 9. http://www. allmath.ru Allmath.ru вся математика в одном месте
- 10. http://www. exponenta. ru Exponenta.ru: образовательный математический сайт http://www. bymath. net Вся элементарная математика: Средняя математическая интернет-школа
- 11. http://www. zadachi. mccme. ru Задачи по геометрии: информационнопоисковаясистема
- 12. http://www. tasks. ceemat. ru Задачник для подготовки к олимпиадам по математике http://www. math-on-line. com Занимательная математика школьникам (олимпиады, игры, конкурсы по математике)
 - 13. http://www.problems.ru Интернет-проект «Задачи»
- 14. http://www. zaba. ru Математические олимпиады и олимпиадные задачи http://www. kenguru. sp. ru Международный математический конкурс «Кенгуру»
- 15. Каргина, 3.А. Особенности воспитательной работы в системе дополнительного образования детей [Электронный ресурс]. URL:https://pandia.ru/text/77/456/934.php(дата обращения: $27.05.2021 \, \Gamma$.)
- 16. Программа воспитания: что это такое, зачем нужна и как разработать [Электронный ресурс]. –URL:https://eduregion.ru/k-zhurnal/programma-vospitaniya-chto-eto-takoe/(датаобращения: $27.05.2021~\Gamma$.)

Контрольно – измерительные материалы

Алгоритмы и конструкции

Самостоятельная

работа

I вариант1.

Сумма катетов прямоугольного треугольника равна 7 м, а его гипотенуза равна 5 м.Обозначив длину одного катетаa м, а другого – b м, выбери подходящую математическую модель для нахождения катетов прямоугольного треугольника.

1)
$$\begin{cases} (a+b) \cdot 2 = 7 \\ a \cdot b = 25 \end{cases} 2) \begin{cases} a+b=7 \\ a^2+b^2=25 \\ a+b=7 \\ (a+b) \cdot 2 = 25 \end{cases} 3) \begin{cases} a+b=25 \\ a \cdot b = 7 \end{cases} 4)$$

2.

Около четырехугольника описана окружность. Зная, что два соседних угла четырехугольника равнысоответственно 111° и 87°, найдите величины оставшихся углов этого четырехугольника в градусах.

3.

В сентябре 1 кг винограда стоил 60 рублей, в октябре виноград подорожал на 25%, а в ноябре еще на 20%. Сколько сдачи получит покупатель при покупке 1 кг винограда после подорожания в ноябре со 100 рублей?

4.

Катер прошел 10 км против течения реки, а затем 45 км по течению реки, затратив на весь путь 2 ч.Найдите собственную скорость катера, если скорость течения реки 5 км/ч.

5

Решите уравнение
$$(x^2 - 25)^2 + (x^2 + 3x - 10)^2 = 0$$
.

II вариант1.

Периметр прямоугольника равен 40 см, а площадь -99 см². Обозначив длину прямоугольника p см, а ширину -a см, выбери подходящую математическую модель для нахождения длины и ширины прямоугольника.

1)
$$\begin{cases} (p+a) \cdot 2 = 40 \\ \frac{1}{2}pa = 99 \end{cases}$$
 2)
$$\begin{cases} (p+a) \cdot 2 = 99 \\ p \cdot a = 40 \end{cases}$$
 3)
$$\begin{cases} (p+a) \cdot 2 = 40 \\ p \cdot a = 99 \end{cases}$$
 4)
$$\begin{cases} p+a = 40 \\ p \cdot a = 99 \end{cases}$$

2.

Окружность вписана в четырехугольник, три стороны которого последовательно равны 7, 9, 13. Найдитечетвертую сторону.

3.

В мае 1 кг бананов стоил 80 рублей, в июне бананы подешевели на 20%, а в июле еще на 25%. Сколькосдачи получит покупатель при покупке 1 кг бананов после снижения цены в июле со 100 рублей?

4.

Катер прошел 30 км против течения реки, а затем 15 км по течению реки, затратив на весь путь 2 ч.Найдите скорость течения реки, если собственная скорость катера 25 км/ч.

5.

Решите уравнение
$$(2x-3)^2(x-3)=(2x-3)(x-3)^2$$
.

Ответы

№	Вариант 1	Вариант 2	Баллы за задание
задания			
1	2	3	1
2	69° и 93°	11	2
3	10	52	2
4	25	5	2
5	-5	0, 1.5, 3	2

Критерии оценивания в баллах

Работа рассчитана на один академический час (урок) «0» -решения нет.

«1»- есть идея решения или только ответ или вычислительная ошибка «2» решение задания полностьюЗачет — 4 балла

Перевод баллов в оценку

Количество баллов	Оценка
0-3	2
4-6	3
7-8	4
9	5

Модуль. Уравнения. Неравенства.

|x|=x, если x ≥0; Модуль икс равен икс, если икс больше или равен нулю.

|x| = -x, если x < 0. Модуль икс равен минус икс, если икс меньше нуля.

$ x \le a$	$ x \ge a$
$-a \le x \le a$	$x \ge a \ u \ x \le -a$
	-a a x
$\int x \le a$	$x \ge a$
$\begin{cases} x \ge -a \end{cases}$	$x \le -a$

x < a	x > a
-a < x < a	x > a u x < -a
-a a x	-a a x
$\int x < a$	$\int x > a$
x > -a	$\left \left x \right \right $

1.	На числовой оси отметьте точки, которые удовлетворяют следующим условиям: 2.
$ x-2 <3$; Γ) $ x ^2$	3.

a) |x|=6; 6) |x|<6; B)

3. Запишите с помощью знака модуля:

a)
$$-3 \le x \le 3$$

$$6) -7 < x < 7$$

B)
$$-4 < x+1 < 4$$

$$\Gamma$$
) -5

e)
$$-8 \le x \le 4$$

4. Известно, что |a|=|b|. Верно ли, что a=b?

5. Известно, что a=b. Верно ли, что |a|=|b|?

6. Известно, что |a|<|b|. Верно ли, что a<b?

7. Известно, что |a| > |b|. Возможно ли, чтоб было a < b?

8. Известно, что числа а и в отрицательные, и |a|>|b|. Какое из неравенств верно: a>b или a<b?

9. Известно, что числа а и в отрицательные, и а<в. Что больше |а| или |b|?

10. Укажите верные для любых а и b равенства (неравенства):

B)
$$|-a|=-|a|$$

$$\mu$$
) $|a+b|=|a|+|b|$

e)
$$|a \cdot b| = |a| \cdot |b|$$

$$\kappa$$
) $2|a|=|2a|$

$$\pi$$
) $|a^2+4|=a^2+4$

м)
$$|a-b|-|b-a|=0$$

11. Раскрыть модуль:

a)
$$|1-\sqrt{2}|$$

B)
$$|\sqrt{3}+\sqrt{5}|$$

$$\Gamma$$
) $|\mathbf{x}^2|$

д)
$$|x^4+1|$$

e)
$$|x^2+2x+2|$$

ж)
$$|x-x^2/4-1|$$

$$-\frac{|a|}{a}$$

л)
$$|-x^2|^3$$

м)
$$|x|$$
 при x=2,25 $|x^2 - 0,2 \cdot x|$

12. При каких х верна запись: а) |x| > -1; б) $|x| \ge 0$; в) |x| < 0; г) |x| > 0.

13. Решите уравнения и неравенства:

- a) |x| = 0
- б) |x| = 4
- B) |x| = -1

- Γ) |x-2| = 1
- μ) |x-3|=2
- e) |x+1| = 0

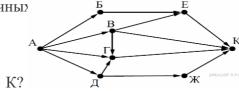
- ж) |x-3| = -1
- 3) |2x-3|=7
- u) |2x+3| = 5

- κ) |4-x|=1.5
- π) |6-x|=7,3
- M) |6-1.5x| = 3

- H) |x-4| < 5
- o) $|x+3| \ge 2$
- π) |x-2| ≥ -2

Графы

Самостоятельная работа «Графы»Вариант 1


1. Между населёнными пунктами A, B,C, D, Е построены дороги, пунктами A, B, C,D, Е построены дороги, про- тяжённость которых (в километрах) протяжённость которых (в километрах) приведена в таблице:

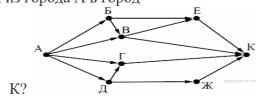
	A	В	C	D	E
A		1			
В	1		2	2	7
C		2			3
D		2			4
E		7	3	4	

Определите длину кратчайшего пути между пунктами А и Е. Передвигатьсяможно только по дорогам, про- тяжённость которых указана в

табли- пе.

- 1) 5 2) 6 3) 7
- 4) 8
- связы- вающих города А, Б, В, Г, Д, Е, Ж К. По каждой дороге можно двигаться и К.По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных

Самостоятельная работа «Графы»


Самостоятельная работа «Графы» Вариант 2

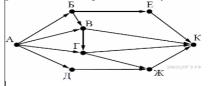
1. Между населёнными приведена в таб- лице:

	A	В	С	D	Е
A		5	3		
В	5		1	4	
С	3	1		6	
D		4	6		1
Е				1	

Определите длину кратчайшего пути между пунктами А и Е. Передвигаться можно только по дорогам, протяжённость которых указана в таблице.

- 1)7
- 2) 8
- 3)9
- 4) 10
- 2. На рисунке — схема дорог, На рисунке — схема дорог, связываю-щих города А, Б, В, Г, Д, Е, Ж и только водном направлении, указанном стрелкой.Сколько существует различных путей из города А в город

Самостоятельная работа «Графы»


Вариант 3

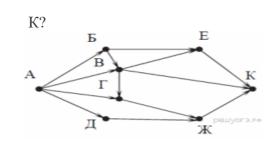
Между населёнными пунктами A, B,C, D, Е построены дороги, пунктами A, B, C,D, Е построены дороги, про- тяжённость которых (в километрах) протяжённость которых (в километрах) приведена в таблице:

	Α	В	С	D	Е
A		3	7		
В	3		2		8
С	7	2		4	
D E			4	Die	1
E		8		1	

Определите длину кратчайшего пути между пунктами А и Е. Передвигатьсяможно только по дорогам, про- тяжённость которых указана в табли- це.

- 1)9
- 2) 10
- 3) 11
- 4) 12
- 2. На рисунке — схема дорог. связы- вающих города А, Б, В, Г, Д, Е, Ж и К.По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

Вариант 2


Между населёнными 1. приведена в таб- лице:

	A	В	C	D	E
A		1			
В	1		4	2	8
С		4			4
D		2		ben	јуо <mark>д</mark> э.Р∘
E		8	4	4	

Определите длину кратчайшего пути между пунктами А и Е. Передвигаться можно только по дорогам, протяжённость которых указана в таблице.

- 1) 5
- 2) 6
- 3) 7
- 4) 9

2. На рисунке — схема дорог, связываю-щих города А, Б, В, Г, Д, Е, Ж и К. По каждой дороге можно двигаться только водном направлении, указанном стрелкой. Сколько существует различных путей из города А в город

Самостоятельная работа «Графы»Вариант 5

1. Между населёнными пунктами А, В,С, D, Е построены дороги, протяжённость которых (в километрах) приведена в таблице:

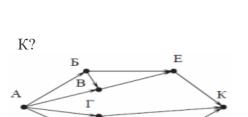
	A	В	C	D	E
A		4	7		
В	4		1	5	
С	7	1		3	
D		5	3	berr	гуо т э.г
E				1	

Определите длину кратчайшего пути между пунктами А и Е. Передвигатьсяможно только по дорогам, про- тяжённость которых указана в табли- це.

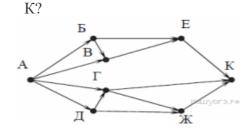
1) 8 2) 9 3) 10 4) 11

Самостоятельная работа «Графы» Вариант 6

1. Между населёнными пунктами A, B, C,D, E построены дороги, протяжённость которых (в километрах) приведена в таб- лице:


	A	В	C	D	E
A		7	4		
В	7		2		4
B C	4	2		4	
D E			4	р	ш√ 4 э.р∢
E		4		4	

Определите длину кратчайшего пути между пунктами А и Е. Передвигаться можно только по дорогам, протяжённость которых указана в таблице.

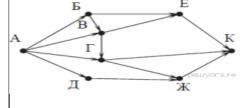

1) 9 2) 10 3) 11 4) 12

2. На рисунке — схема дорог, связываю-щих города А, Б, В, Г, Д, Е, Ж и К. По

2. На рисунке — схема дорог, и К.По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город

каждой дороге можно двигаться связы- вающих города А, Б, В, Г, Д, Е, Ж голько в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город

Самостоятельная работа «Графы»Вариант 7


1. Между населёнными пунктами A, B,C, D, Е построены дороги, протяжённость которых (в километрах) приведена в таблице:

	A	В	C	D	Е
A		3			
B	3		1	2	6
		1			3
D E		2		pe	шуа3э.г
Е		6	3	3	

Определите длину кратчайшего пути между пунктами А и Е. Передвигатьсяможно только по дорогам, про- тяжённость которых указана в табли- пе.

> 1) 9 2) 8 3) 7 4) 6

7. На рисунке — схема дорог, связы- вающих города А, Б, В, Г, Д, Е, Ж и К.По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

Самостоятельная работа «Графы» Вариант 8

1. Между населёнными пунктами А, В, С, D, Е построены дороги, протяжённость которых (в километрах) приведена в таб- лице:

	A	В	C	D	Е
A		2	5	1	
В	2		3		
C	5	3		3	2
D	1		3	р	BLIVOF3.P4
Е			2		

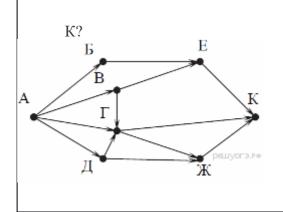
Определите длину кратчайшего пути между пунктами А и Е. Передвигаться можно только по дорогам, протяжённость которых указана в таблице.

> 1) 4 2) 5 3) 6 4)7

На рисунке — схема дорог, связываю-щих города А, Б, В, Г, Д, Е, Ж и К. По каждой дороге можно двигаться только водном направлении, указанном стрелкой.Сколько существует различных путей из города А в город

К?

	А Г Ж решусгэ. Р ф
1. Между населёнными пунктами A, B,	Самостоятельная работа «Графы» Вариант 10 1. Между населёнными пунктами А, В, С,
C, D, E построены дороги, про-	D, E построены дороги, протяжённость

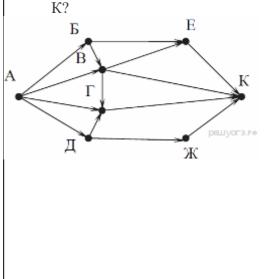

тяжённость которых (в километрах)приведена в таблице:

	Α	В	C	D	Е
Α		2		1	
В	2		3	3	
С		3		3	2
D	1	3	3	De	LIVOER P&
Е			2		

Определите длину кратчайшего пути между пунктами А и Е. про- тяжённость которых указана в табли- це.

- 1)6
- 2) 7
- 3)8
- 4) 9

2. На рисунке — схема дорог, связы- вающих города А, Б, В, Г, Д, Е, Ж К. По каждой дороге можно двигаться и К.По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город


которых (в километрах) приведена в таб-лице:

	A	В	С	D	E
A		2	3		
В	2			3	5
C	3			4	
D		3	4	p	шуа-э.г
Е		5		1	

Определите длину кратчайшего пути между пунктами А и Е. Передвигаться Передвигатьсяможно только по дорогам, можно только по дорогам, протяжённость которых указана в таблице.

- 1) 5
- 2) 6
- 3) 7
- 4) 8

2. На рисунке — схема дорог, связываю-щих города А, Б, В, Г, Д, Е, Ж и только водном направлении, указанном стрелкой. Сколько существует различных путей из города А в город

Тест по темам "Графы. Поиск количества путей. Использование и анализ информационных моделей (таблицы, диаграммы, графики). Поиск и сортировкаинформации в базах данных."

Система оценки: 5* балльная

Список вопросов тестаВопрос 1

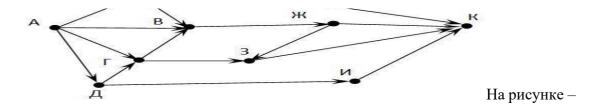
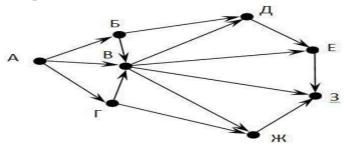
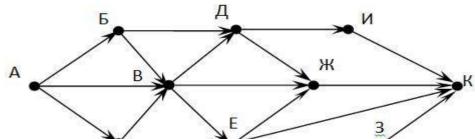



схема дорог, связывающих города A, Б, B, Γ , Д, E, Ж, 3, И, К. По каждой дороге

можно двигаться только в одном направлении, указанном стрелкой. Сколькосуществует различных путей из города А в город К?


Вопрос 2

На рисунке – схема дорог, связывающих города

А, Б, В, Г, Д, Е, Ж, З. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город 3?

Вопрос 3

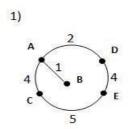
На рисунке – схема дорог, связывающих города А, Б, В, Р, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

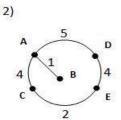
Вопрос 4

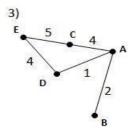
		4	Α	В	С	D	Ε				
		Α	Ĭ.	5	3						
		В	5		4	2					
		С	3	4			3				
		D		2							
		Е		***	3		Ï				
1)	2)		Rel	252 93	3)				4)		
в ₄ с	B 4	С				В	4	С		В	C
2 5 3 3 D A E	5 2 P	3	3 E		5 D	2	A	3 3	5 / D	2 × 3	3/4/3 E

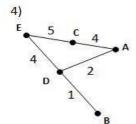
В таблице приведена стоимость перевозки пассажиров между соседниминаселенными пунктами. Укажите схему, соответствующую таблице.

Варианты ответов

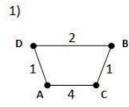

1


- •
- 2
- 3
- 4

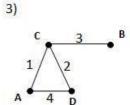

Вопрос 5

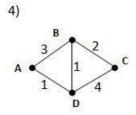

В таблице приведена стоимость перевозки пассажиров между соседниминаселенными пунктами. Укажите схему, соответствующую таблице.

	Α	В	С	D	Ε
Α		2	4	1	
В	2				
С	4			10 01	5
D	1		251 103		4
E			5	4	


Варианты ответов

- 1
- 2
- 3
- 4


Вопрос 6


В таблице приведена стоимость перевозки пассажиров между соседниминаселенными пунктами. Укажите схему, соответствующую таблице.

	Α	В	C	D
Α		3	0.	1
В	3		2	1
С		2		4
D	1	1	4	

Варианты ответов

1

- •
- 2
- 3
- 4

Вопрос 7

	Α	В	С	D	E	F
Α		5				
В	5		9	3	8	
C		9			4	
D		3			2	
E		8	4	2		7
F					7	

Между населёнными пунктами A, B, C, D, E, F построены дороги, протяжённостькоторых приведена в таблице. (Отсутствие числа в таблице означает, что прямой

дороги между пунктами нет.)

Определите длину кратчайшего пути между пунктами A и F (при условии, чтопередвигаться можно только по построенным дорогам).

Вопрос 8

Между населёнными пунктами A, B, C, D, E, F построены дороги, протяжённостькоторых приведена в таблице. (Отсутствие числа в таблице означает, что прямой дороги между пунктами нет.). Определите длину кратчайшего пути между

	Α	В	С	D	Ε	F
Α		4				
В	4		6	3	6	
C	97	6		1	4	10
D		3	\$ 95 5 %		2	2). 3)
E		6	4	2		5
F					5	

Вопрос 9

Между населёнными пунктами A, B, C, D, E, F построены дороги, протяжённостькоторых приведена в таблице. (Отсутствие числа в таблице означает, что прямой дороги между пунктами нет.). Определите длину кратчайшего пути между

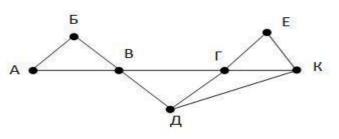
пунктами А и F (при условии, что передвигаться можно только по построеннымдорогам).

	Α	В	С	D	E	F
Α		7				
В	7		12	7	12	2.0
С	0 3	12	8 88		10	000
D		7	3 30		4	86 88
Е		12	10	4		4
F					4	

Вопрос 10

	П1	П2	ПЗ	П4	П5	П6	П7
П1			30		25		18
П2			17	12			5
ПЗ	30	17		23		34	15
П4		12	23	40 0		46	
П5	25						37
П6			34	46			18
П7	18	10 1	15		37	18	

На рисунке справа схема дорог H-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе.

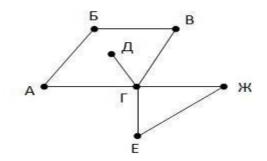

Определите, какова длина дороги из пункта А в пункт Д. В ответе запишите целоечисло – так, как оно указано в таблице.

Вопрос 11

На рисунке справа схема дорог H-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никакне связана с буквенными обозначениями на графе. Определите, какова длина дороги из

пункта В в пункт Г. В ответе запишите целое число – так, как оно указано в таблице.

	П1	П2	ПЗ	П4	П5	П6	П7
П1		11	5		12		
П2	11		8	15	10	23	
ПЗ	5	8			10	- 88	7
П4		15				10	
П5	12		10				11
П6		23		10			
П7	2		7		11	18	



Вопрос 12

На рисунке справа схема дорог H-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе.

Определите длину дороги между пунктами Е и Ж. Передвигаться можно толькопо указанным дорогам.

	П1	П2	ПЗ	П4	П5	П6	П7
П1		12	40 03			7	
П2	12				8		
ПЗ	2.7				×.	11	14
П4	(C		80 V3 80 V3			5	
П5	se	8	80 O			15	
П6	7		11	5	15		9
П7		1.0	14		-	9	

Вопрос 13

В фрагменте базы данных представлены сведения о родственных отношениях. Определите на основании приведенных данных, фамилию и инициалы племянника Симоняна Н.И.

Примечание: племянник – сын сестры или брата.

Таблица 1

ID	Фамилия_И.О.	Пол
86	Седых И.Т.	M
83	Седых А.И.	M
50	Силис А.Т.	Ж
79	Симонов Т.М.	M
23	Симонов А.Т.	M
13	Силис И.И.	Ж
98	Симонян Т.Н.	Ж
11	Симонян Н.И.	M

Таблица 2

ID_Родителя	ID_Ребенка	
98	83	
86	13	
79	50	
86	83	
13	50	
79	23	
13	23	
98	13	
86	11	
\$24.450	***	

Варианты ответов

- Седых А.И.
- Седых И.Т.
- Симонов А.Т.
- Симонов Т.М.

Вопрос 14

В фрагменте базы данных представлены сведения о родственных отношениях. Определите на основании приведенных данных фамилию и инициалы внучки Белых И.А.

Таблица 1

ID	Фамилия_И.О.	Пол
1108	Козак Е.Р.	ж
1010	Котова М.С.	ж
1047	Лацис Н.Б.	ж
1037	Белых С.Б.	ж
1083	Петрич В.И.	ж
1025	Саенко А.И.	ж
1071	Белых А.И	M
1012	Белых И.А.	M
1098	Белых Т.А.	М
1096	Белых Я.А.	M
1051	Мугабе Р.Х	М
1121	Петрич Л.Р.	М
1086	Петрич Р.С.	М

Таблица 2

таолица 2				
ID_Родителя	ID_Ребенка			
1010	1071			
1012	1071			
1010	1083			
1012	1083			
1025	1086			
1047	1096			
1071	1096			
1047	1098			
1071	1098			
1083	1108			
1086	1108			
1083	1121			
1086	1121			

Варианты ответов

- Белых С.Б.
- Козак Е.Р.
- Петрич В.И.
- Петрич Л.Р.

Вопрос 15

В этом фрагменте базы данных представлены сведения о родственных отношениях. На основании приведённых данных определите фамилию иннициалы внучки Петровой С.М.

Таблица 1

ID	Фамилия_И.О.	Пол		
25	25 Жвания К.Г.			
49	Черняк А.П.	M		
62	Ильченко С.И.	ж		
76	Ильченко Т.В.	ж		
82	Петрова С.М.	ж		
96	Басис В.В.	ж		
102	102 Ильченко В.И.			
123	123 Павлыш Н.П.			
134	134 Черняк П.Р.			

Таблица 2

ID_Родителя	ID_Ребенка	
25	134	
76	49	
76	123	
82	76	
82	96	
102	76	
102	96	
134	49	
134	123	

Варианты ответов

- Басис В.В.
- Черняк А.П.
- Павлыш Н.П.
- Ильченко С.И.

Вопрос 16

Точки графа называются...

Варианты ответов

- рёбрами графа
- пунктами графа
- вершинами графа
- узлами графа

Вопрос 17

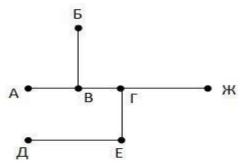
Граф - это...

Выберите один из 4 вариантов ответа:

Варианты ответов

- совокупность двух множеств: вершин и ребер, между которыми определеноотношение инцидентности
 - множество точек, две из которых обязательно соединяются линиями
 - только две точки, которые соединяются линиями
 - множество точек, которые никогда не соединяются линиями

Вопрос 18


Линии, которые связывают вершины, называются...

Варианты ответов

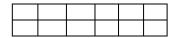
- сторонами графа
- вершинами графа
- рёбрами графа
- отрезками

Вопрос 19

	П1	П2	ПЗ	П4	П5	П6	П7
П1						10	
П2			7		8	12	
ПЗ		7					
П4					5		
П5		8		5			4
П6	10	12					
П7		- 0			4		

На рисунке справа схема дорог H-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе.

Определите длину дороги между пунктами Γ и Ж. Передвигаться можно толькопо указанным дорогам.

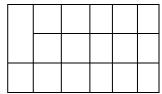

Логика.

Самостоятельная работа. Вариант 1

1. На столе лежала шоколадка. Придя домой, мама увидела, что шоколадки нет. Мама спросиладетей: кто взял? Миша сказал: это Катя.Катя сказала: это Ваня.Ваня сказал: это я.

Известно, что один ребенок сказал правду, а двое - солгали. Кто взял шоколадку?

- 2. В группе из 100 туристов 70 человек знают английский язык, 45 знают французский язык и 23 человека знают оба языка. Сколько туристов в группе не знают ни английского, ни французского языка?
- 3. Сколько существует различных семизначных телефонных номеров, если номер не начинается с нуля и в номере нет повторяющихся цифр?
- 4. Рядом с лабораторией протекает бурная река. Как при помощи двух сосудов объёмом 3 и 4 литра отмерить ровно 5 литров речной воды?
 - 5. Решить ребус (найти одно решение).


Вариант 2

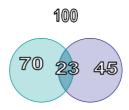
1. На столе лежала шоколадка. Придя домой, мама увидела, что шоколадки нет. Мама спросиладетей: кто взял?

Маша сказала: это Коля. Коля сказал: это Вася. Вася сказал: это я.

Известно, что один ребенок сказал правду, а двое - солгали. Кто взял шоколадку?

- 2. В отряде из 40 ребят 30 умеют плавать, 27 умеют играть в шахматы и только пятеро не умеют нитого ни другого. Сколько ребят умеют плавать и играть в шахматы?
- 3. Сколько существует различных шестизначных телефонных номеров, если номер не начинается снуля и в номере нет повторяющихся цифр?
- 4. Рядом с лабораторией протекает бурная река. Как при помощи двух сосудов объёмом 4 и 5 литровотмерить ровно 6 литров речной воды?
 - 5. Решить ребус (найти одно решение).

Решения.


Вариант 1.

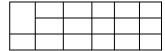
Составим таблицу:

Ваня — взял: К п, В п, М л Катя — взяла: К л, В л, М п

Миша – взял: К л, В л, М л Ответ: Значит Катя – взяла.

Можно решить задачу, используя круги Эйлера: 100-(70+45-23)=100-92=8.

3. На первом месте может стоять одна из 9 цифр (все, кроме 0), на втором месте - 9 (все, кроме первой), на третьем - 8 (все, кроме первых двух) и т.д. По правилу умножения получаем: 9.9.8.7.6.5.4=544320.

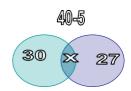

4.

	Сколько литров воды в 1 сосуде (3 л)	Сколько литров воды во 2 сосуде (4 л)
	0	4
	3	1
	0	1
4	1	0
	1	4

Всего в двух сосудах 5 литров.

5. Решение: Г -1, К-9 или 8. Пусть К-9, тогда A-8, O - 0, тогда P-5, У-4. Переберем С -2, 3, 6. Значит С -3.

Ответ:


2 вариант

1. Составим таблицу:

Вася – взял: К п, В п, М лКоля – взял: К л, В л, М п

Маша – взяла: К л, В л, М л Ответ: Значит Коля – взял.

2. Можно решить задачу, используя круги Эйлера: 30+27-x=40-5, тогда x=57-35=12.

3. На первом месте может стоять одна из 9 цифр (все, кроме 0), на втором месте 9 (все, кроме первой), на третьем -8 (все, кроме первых двух) и т.д. По правилу умножения получаем: $9 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 136080$.

4

	Сколько литров воды в 1 сосуде (4 л)	Сколько литров воды во 2 сосуде (5 л)
1	0	5
2	4	1
3	0	1
	1	0
4	1	5

Всего в двух сосудах 6 литров.

5. Решение:

K-1,2,3,4, T, четное, P, Π –нечетное. Так как $O+O=^*O$, то O-9, C-5,6,7,8,9. Переберем, тогда:

Критерии оценивания в

баллах

«0» -решения нет «1»- есть идея решения «2» решение задания полностью

4 баллов – зачет по работе.

Шкала перевода в оценку: 0-3 - 2

4-6 - 3

7-8 - 4

9-10 - 5

Тест «Основные логические операции»

- 1. Присоединение частицы НЕ к высказыванию это:
- 1. дизъюнкция
- 2. конъюнкция
- 3. импликация
- 4. эквивалентность
- 5. инверсия

- 1. Соединение двух простых высказываний **А** и **В** в одно составное с помощьюсоюза **И** это:
- лизъюнкция
- 2. конъюнкция
- 3. импликация
- 4. эквивалентность
- 5. инверсия
- 1. Операция дизьюнкция называется иначе:
- 1. логическое умножение
- 2. логическое сложение
- 3. логическое следование
- 4. логическое равенство
- 5. логическое отрицание
- 1. Операция импликация называется иначе:
- 1. логическое умножение
- 2. логическое сложение
- 3. логическое следование
- 4. логическое равенство
- 5. логическое отрицание
- 1. Эквивалентность это:
- 1. соединение двух простых высказываний в одно составное с помощью союза И
- 2. соединение двух простых высказываний в одно составное с помощью союза ИЛИ
- 3. соединение двух высказываний в одно с помощью оборота речи «Если ..., то...»
- **4.** соединение двух высказываний в одно с помощью оборота речи **«...тогда итолько тогда, когда ...»**
 - 5. присоединение частицы НЕ к высказыванию
 - 1. Составное высказывание, образованное с помощью операции импликации:
 - 1. ложно тогда и только тогда, когда из истинной предпосылки следует ложныйвывод
 - 2. истинно тогда и только тогда, когда из истинной предпосылки следует ложныйвывод
- 3. истинно тогда и только тогда, когда оба высказывания одновременно либоложны, либо истинны
 - 4. истинно, когда хотя бы одно высказывание истинно
 - 5. истинно тогда и только тогда, когда составляющие высказывания одновременноистинны
 - 1. Составное высказывание, образованное с помощью операции эквивалентности:
 - 1. ложно тогда и только тогда, когда из истинной предпосылки следует ложныйвывод
 - 2. истинно тогда и только тогда, когда из истинной предпосылки следует ложныйвывод
- 3. истинно тогда и только тогда, когда оба высказывания одновременно либоложны, либо истинны
 - 4. истинно, когда хотя бы одно высказывание истинно
 - 5. истинно тогда и только тогда, когда составляющие высказывания одновременноистинны

1. Какой логической операции соответствует таблица истинности?

A	В	A?B
0	0	0
0	1	0
1	0	0
1	1	1

- 1. дизъюнкция
- 2. конъюнкция
- 3. эквивалентность
- 4. инверсия
- 5. импликация

1. Какой логической операции соответствует таблица истинности?

A	В	A?B
0	0	0
0	1	1
1	0	1
1	1	1

- 1. дизъюнкция
- 2. конъюнкция
- 3. эквивалентность
- 4. инверсия
- 5. импликация

1. Какой логической операции соответствует таблица истинности?

A	В	A?B
0	0	1
0	1	1
1	0	0
1	1	1

- 1. дизъюнкция
- 2. конъюнкция
- 3. эквивалентность
- 4. инверсия
- 5. импликация

1. Какой логической операции соответствует таблица истинности?

A	В	A?B
0	0	1
0	1	0
1	0	0
1	1	1

- 1. дизъюнкция
- 2. конъюнкция
- 3. эквивалентность
- 4. инверсия
- 5. импликация
- 1. Какой логической операции соответствует таблица истинности?

A	?
0	1
1	0

- 1. дизъюнкция
- 2. конъюнкция
- 3. эквивалентность
- 4. инверсия
- 5. импликация
- 1. Даны высказывания:
- А «Иванов здоров»
- **В** «Иванов богат»

Какая формула соответствует высказыванию: «Если Иванов здоров и богат, то онздоров»? $(1)^{(a,b)} + A = (2)^{(A^*B)} + B = (3)^{(A^*B)} + (4)^{(B,a,b)} + B$

- 1. Даны высказывания:
- $\mathbf{A} \mathbf{x} \mathbf{X}$ отрицательное число
- $\mathbf{B} \mathbf{w}\mathbf{Y} \mathbf{o}$ трицательное число»

Какая формула соответствует высказыванию «Хотя бы одно из чисел X и Yотрицательное»? 1) y B 2) A B 3) A B 4) A B 5

- 1. Даны высказывания:
- $\mathbf{A} \langle X0 \rangle$
- $\mathbf{B} \langle \langle X \leq 6 \rangle \rangle$

Какая формула соответствует высказыванию « $0X \le 6$ »?1)2) 3) 4) ~

Параметр.

Решение линейных неравенств с одной переменной.

ешение линеиных неравенств с однои переменнои.

140. При каких значениях a уравнение:

1) $x^2 + 3x - a = 0$ не имеет корней;

- 2) $2x^2 8x + 5a = 0$ имеет хотя бы один действительный корень?
- 141. При каких значениях b уравнение: 1) $3x^2 - 6x + b = 0$ имеет два различных действительных корня; 2) $x^2 - x - 2b = 0$ не имеет корней?
- **155.** При каких значениях a уравнение:
- 1) 4x + a = 2 имеет положительный корень; 2) (a + 6)x = 3 имеет отрицательный корень;
- 3) $(a-1)x = a^2 1$ имеет единственный положительный корень?
- **156.** При каких значениях m уравнение:
- 1) 2 + 4x = m 6 имеет неотрицательный корень;
- 2) $mx = m^2 7m$ имеет единственный отрицательный корень?

* Найдите все значения a, при которых имеет два различных действительных корня уравнение:1) 157.

$$ax^2 + 2x - 1 = 0;$$
 2) $(a + 1)x^2 - (2a - 3)x + a = 0;$ 3) $(a - 3)x^2 - 2(a - 5)x + a - 2 = 0.$

* Найдите все значения a, при которых не имеет корней уравнение $(a-2)x^2+(2a+1)x+a=0$.

* Существует ли такое значение а, при котором не имеет решений неравенство (в случаеутвердительного ответа укажите это значение):

1)
$$ax > 3x + 4$$
; 2) $(a^2 - a - 2)x \le a - 2$?

* Существует ли такое значение а, при котором любое число является решением неравенства (в случае утвердительного ответа укажите это значение):

1)
$$ax > -1 - 7x$$
; 2) $(a^2 - 16)x \ge a + 4$?

* Для каждого значения a решите неравенство:

1)
$$ax > 0$$
;

3)
$$ax \ge a$$
;

5)
$$(a-2)x$$

2)
$$ax < 1$$
;

4)
$$2(r-a) < ar - 4$$

6)
$$(a+3)x \le$$

4)
$$2(x-a) < ax-4$$
;

6)
$$(a+3)x \le a^2 - 9$$
.

* Для каждого значения a решите неравенство:

1)
$$a^2x \le 0$$
;

2)
$$a + x < 2 - ax$$
;

3)
$$(a + 4)x > 1$$
.

Системы линейных неравенств

204. * При каких значениях a имеет хотя бы одно решение система неравенств:

$$\begin{cases} \begin{cases} x \geq 3, \\ x \leq 3 \end{cases} \end{cases}$$

$$\begin{cases} x \leq 3, \\ x \geq a \end{cases}$$

* При каких значениях a не имеет решений система неравенств:

$$\begin{cases} (x > 4), \\ \begin{cases} x > 4 \end{cases} \end{cases}$$

$$\begin{cases} x \leq 1, \\ x \geq a \end{cases}$$

* При каких значениях a множеством решений системы неравенств (x > -1, является промежуток: 206.

1)
$$(-1; +\infty);$$

2)
$$[1:+\infty)$$
?

* Для каждого значения a решите систему неравенств x < 2, 207.

 $x \le a$. (x < -3, *Для каждого значения a решите систему неравенств 208.

* При каких значениях a множество решений системы неравенств $x \ge 7$, содержит ровно четыре 209. целых решения?

* При каких значениях b множество решений системы неравенств x < 5, содержит ровно три целых 210. решения?

- **211.** * При каких значениях a наименьшим целым решением системы неравенств $\begin{cases} x \ge 6, \\ x > a \end{cases}$ является число
- 9?
- * При каких значениях b наибольшим целым решением системы неравенств увляется число $x \le b$,
 - -6?
 - **213.** * При каких значениях a корни уравнения $x^2 2ax + a^2 4 = 0$ меньше числа 5?
 - **214.** * При каких значениях a корни уравнения $x^2 (4a 2)x + 3a^2 4a + 1 = 0$ принадлежат промежутку [-2; 8]?
 - **215.** * При каких значениях a один из корней уравнения $3x^2 (2a + 5)x + 2 + a a^2 = 0$ меньше -2, а другой больше 3?

Исследование квадратичной функции.

- **276.*** Постройте график функции $f(x) = x^2$, определенной на промежутке [a; 2], где a < 2. Для каждогозначения a найдите наибольшее и наименьшее значения функции.
 - **364.** При каком значении b промежуток (-∞; 2] является промежутком возрастания функции $y = -4x^2 bx + 5$?
 - **365.** При каком значении b промежуток ($-\infty$; -3] является промежутком убывания функции $y = 3x^2 + bx 8$?
- **366.** При каком значении a график квадратичной функции $y = ax^2 + (a \frac{1}{4})$ имеет с осью абсцисс 2)x +одну общую точку?
- **367.** •• При каких значениях a функция $y = 0.5x^2 3x + a$ принимает неотрицательные значения при всех действительных значениях x?
- **368.** •• При каких значениях a функция $y = -4x^2 16x + a$ принимает отрицательные значения при всех действительных значениях x?
 - **369.** •• При каком значении c наибольшее значение функции $y = -5x^2 + 10x + c$ равно -3?
 - **370.** •• При каком значении *c* наименьшее значение функции $y = 0.6x^2 6x + c$ равно –1?
- **385.** * Пусть x_1 и x_2 нули функции $y = -3x^2 (3a 2)x + 2a + 3$. При каких значениях a выполняетсянеравенство x_1 < $-2 < x_2$?
- **386.** * Известно, что x_1 и x_2 нули функции $y = 2x^2 (3a 1)x + a 4$, $x_1 < x_2$. При каких значениях a число 1 принадлежит промежутку $[x_1; x_2]$?
 - **430.*** При каких значениях a данное неравенство выполняется при всех действительных значениях x:1) $x^2 4x + a > 0$;

2)
$$x^2 + (a-1)x + 1 - a - a^2 \ge 0$$
;

3)
$$-\frac{1}{4} \frac{x^2 + \dots -8a < 0;4)(a - \dots -(a+1)x + a + 1 > 0?}{4 \cdot 5ax - 9a^2 \cdot 1)x^2}$$

- **431.*** При каких значениях a не имеет решений неравенство:
- 1) $-x^2 + 6x a > 0$; 2) $x^2 (a+1)x + 3a 5 < 0$; 3) $ax^2 + (a-1)x + (a-1) < 0$?
- **432.*** Для каждого значения *а* решите систему неравенств:

1)
$$\begin{cases} x^2 - 5x + 4 > 0, \\ x > a^{\frac{1}{2}} \end{cases}$$

1)
$$\begin{cases} x^2 - 5x + 4 > 0, \\ x > a \end{cases}$$
 $\begin{cases} 4x^2 - 3x - 1 \le 0, \\ x < a. \end{cases}$

433.* Для каждого значения a решите систему неравенств:

1)
$$\begin{cases} x^2 - x - 72 < 0, \\ x > a \end{cases}$$

$$(x) \begin{cases} x^2 - 9x + 8 > 0, \\ x < a. \end{cases}$$

Системы уравнений с двумя переменными.

467.* Сколько решений в зависимости от значения a имеет система уравнений:

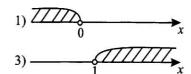
$$\begin{cases} y = |x|, \\ 1) \begin{cases} x^2 + y = a; \\ x^2 + y^2 = a^2, \end{cases}$$

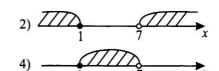
$$\begin{cases} |x| = 4; \end{cases}$$

$$\begin{cases} y - x = 1, \\ xy = a; \end{cases}$$

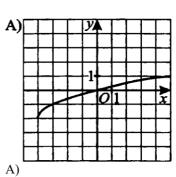
$$\begin{cases} x^{2} + y^{2} = 4, \\ y = x^{2} + a? \end{cases}$$

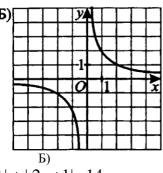
468.* Сколько решений в зависимости от значения a имеет система уравнений:

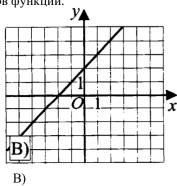

1)
$$\begin{cases} x^2 + y^2 = a, \\ |y| = 1; \end{cases}$$
 2) $\begin{cases} x^2 + y^2 = \\ y = a - |x|; \end{cases}$ 3) $\begin{cases} x^2 + y^2 = a^2, \\ xy = 4? \end{cases}$


$$\begin{cases} x^2 + y^2 = \\ y = 4 - |x| \end{cases}$$

$$\begin{cases} x^2 + y^2 = a^2, \\ xy = 4? \end{cases}$$


Самостоятельная работаВариант 1


На какой из координатных прямых показано решение неравенств? системы $\begin{cases} -x+5 > -2, \\ 3x+2 \geqslant 5? \end{cases}$

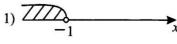


Запишите формулы для трех предложенных на рисунке графиков функций. 2.

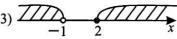
Решите уравнение |x-3|+|2x+1|=14.

Постройте график функции

и определите, при всех значениях т, сколько

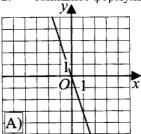

общих точек прямая у

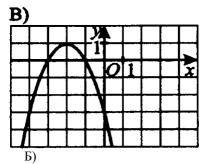
 $\exists \exists m$ имеет с графиком функции.


Вариант 2

1. На какой из координатных прямых показано решение системы неравенств?

 $\begin{cases} 3x - 7 \leqslant -1, \\ 3 - 2x > 5. \end{cases}$





B)

2. Запишите формулы для трех предложенных на рисунке графиков функций. y

- 3. Решите уравнение |3x+5|-|x-4|=1. $(x+5)(x^2+5x+4)$
- 4. Постройте график функции $y = \frac{x+4}{2}$ и определите, при всех значениях m, сколько общих точек прямая y $argument = \frac{1}{2}m$ имеет с графиком функции.